Imaging facility of IEB AS CR
Publications
2024 Aliaga Fandino, A. C., Jelínková, A., Marhava, P., Petrášek, J., and Hardtke, C. S. (2024). Ectopic assembly of an auxin efflux control machinery shifts developmental trajectories. Plant Cell 36, 1791–1805. doi:10.1093/plcell/koae023. Daněk, M., Kocourková, D., Korec Podmanická, T., Eliášová, K., Nesvadbová, K., Krupař, P., et al. (2024). A novel workflow for unbiased 3D quantification of autophagosomes in Arabidopsis thaliana roots . J. Exp. Bot. 75, 5412–5427. doi:10.1093/jxb/erae084. Dragwidge, J. M., Wang, Y., Brocard, L., De Meyer, A., Hudeček, R., Eeckhout, D., et al. (2024). Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants. Nat. Cell Biol. 26, 438–449. doi:10.1038/s41556-024-01354-6. Drs, M., Krupař, P., Škrabálková, E., Haluška, S., Müller, K., Potocká, A., et al. (2024). Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. Plant. Cell Environ. doi:10.1111/pce.15111. Kalachova, T., Jindrǐchová, B., Pospíchalová, R., Fujera, J., Artemenko, A., Jancí̌k, J., et al. (2024). Plasma Treatment Modifies Element Distribution in Seed Coating and Affects Further Germination and Plant Growth through Interaction with Soil Microbiome. J. Agric. Food Chem. 72, 5609–5624. doi:10.1021/acs.jafc.3c07160. Kumar, V., and Hafidh, S. (2024). A protocol for in vivo RNA labeling and visualization in tobacco pollen tubes. STAR Protoc. 5, 103433. doi:10.1016/j.xpro.2024.103433. Vaculíková, J., Holá, M., Králová, B., Lelkes, E., Štefanovie, B., Vágnerová, R., et al. (2024). NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex. Plant J. doi:10.1111/tpj.16869. 2023 Zemlyanskaya, E. A., Zemlianski, V., Pěnčık, A., Kelley, D. R., Helariutta, Y., Novák, O., et al. (2023). N6-adenosine methylation of mRNA integrates multilevel auxin response and ground tissue development in Arabidopsis. Dev. 150. doi:10.1242/dev.201775. Stehlík, D., Trdá, L., Leontovyčová, H., Kalachova, T., and Burketová, L. (2024). Upregulation of LmHxt1 gene is associated with reduced virulence of Leptosphaeria maculans on Brassica napus. J. Plant Pathol. doi:10.1007/s42161-023-01568-x. Martinek, J., Cifrová, P., Vosolsobě, S., García-González, J., Malínská, K., Mauerová, Z., et al. (2023). ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants. Nat. plants 9, 1874–1889. doi:10.1038/s41477-023-01542-6. Serre, N. B., Wernerová, D., Vittal, P., Dubey, S. M., Medvecká, E., Jelínková, A., et al. (2023). The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. Elife 12. doi:10.7554/eLife.85193. Lelkes, E., Jemelková, J., Holá, M., Štefanovie, B., Kolesár, P., Vágnerová, R., et al. (2023). Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. Plant J. doi:10.1111/tpj.16282. Kusová, A., Steinbachová, L., Přerovská, T., Drábková, L. Z., Paleček, J., Khan, A., et al. (2023). Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. Plant Mol. Biol. 1, 3. doi:10.1007/s11103-023-01348-2. Angelis, K. J., Záveská Drábková, L., Vágnerová, R., and Holá, M. (2023). RAD51 and RAD51B Play Diverse Roles in the Repair of DNA Double Strand Breaks in Physcomitrium patens. Genes (Basel). 14. doi:10.3390/genes14020305. 2022 Korniienko, N., Kharina, A., Zrelovs, N., Jindřichová, B., Moravec, T., Budzanivska, I., et al. (2022). Isolation and Characterization of Two Lytic Phages Efficient Against Phytopathogenic Bacteria From Pseudomonas and Xanthomonas Genera. Front. Microbiol. 13. doi:10.3389/fmicb.2022.853593. Angelini, J., Klassen, R., Široká, J., Novák, O., Záruba, K., Siegel, J., et al. (2022). Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. Plants 11. doi:10.3390/plants11030313. Batystová, K., Synek, L., Klejchová, M., Janková Drdová, E., Sabol, P., Potocký, M., et al. (2022). Diversification of SEC15a and SEC15b isoforms of an exocyst subunit in seed plants is manifested in their specific roles in Arabidopsis sporophyte and male gametophyte. Plant J. 110, 1382–1396. doi:10.1111/tpj.15744. García-González, J., Lacek, J., Weckwerth, W., and Retzer, K. (2022). Throttling Growth Speed: Evaluation of aux1-7 Root Growth Profile by Combining D-Root system and Root Penetration Assay. Plants 11. doi:10.3390/plants11050650. Kalachova, T., Škrabálková, E., Pateyron, S., Soubigou-Taconnat, L., Djafi, N., Collin, S., et al. (2022). DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiol. 190. doi:10.1093/plphys/kiac354. Kashkan, I., Hrtyan, M., Retzer, K., Humpolíčková, J., Jayasree, A., Filepová, R., et al. (2022). Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. New Phytol. 233, 329–343. doi:10.1111/nph.17792. Klodová, B., Potěšil, D., Steinbachová, L., Michailidis, C., Lindner, A. C., Hackenberg, D., et al. (2022). Regulatory dynamics of gene expression in the developing male gametophyte of Arabidopsis. Plant Reprod. doi:10.1007/s00497-022-00452-5. Kulichová, K., Pieters, J., Kumar, V., Honys, D., and Hafidh, S. (2022). A Plastid-Bound Ankyrin Repeat Protein Controls Gametophyte and Early Embryo Development in Arabidopsis thaliana. Front. Plant Sci. 13. doi:10.3389/fpls.2022.767339. Ortmannova, J., Sekeres, J., Kulich, I., Santrucek, J., Dobrev, P., Zarsky, V., et al. (2022). Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. J. Exp. Bot. 73, 742–755. doi:10.1093/jxb/erab457. Pečenková, T., Pejchar, P., Moravec, T., Drs, M., Haluška, S., Šantrůček, J., et al. (2022). Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. Mol. Plant Pathol. 23, 664–678. doi:10.1111/mpp.13187. Rubil, N., Kalachova, T., Hauser, T. P., and Burketová, L. (2022). Specialist Aphid Feeding Causes Local Activation of Salicylic and Jasmonic Acid Signaling in Arabidopsis Veins. Mol. Plant-Microbe Interact. 35, 119–124. doi:10.1094/MPMI-08-21-0203-SC. Serrano, N., Pejchar, P., Soukupová, H., Hubálek, M., and Potocký, M. (2022). Comprehensive analysis of glycerolipid dynamics during tobacco pollen germination and pollen tube growth. Front. Plant Sci. 13. doi:10.3389/fpls.2022.1028311. IF=6.627, 1* Scholz, P., Pejchar, P., Fernkorn, M., Škrabálková, E., Pleskot, R., Blersch, K., et al. (2022). DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytol. 233, 2185–2202. doi:10.1111/nph.17930. Starodubtseva, A., Kalachova, T., Retzer, K., Jelínková, A., Dobrev, P., Lacek, J., et al. (2022). An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Sci. Rep. 12. doi:10.1038/s41598-022-10458-8. 2021 Brejšková, L., Hála, M., Rawat, A., Soukupová, H., Cvrčková, F., Charlot, F., et al. (2021). SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella ( Physcomitrium patens ). Plant J. 106, 831–843. doi:10.1111/tpj.15205. García-González, J., Lacek, J., Weckwerth, W., and Retzer, K. (2021). Exogenous carbon source supplementation counteracts root and hypocotyl growth limitations under increased cotyledon shading, with glucose and sucrose differentially modulating growth curves. Plant Signal. Behav. 16. doi:10.1080/15592324.2021.1969818. Kollárová, E., Baquero Forero, A., and Cvrčková, F. (2021). The Arabidopsis thaliana Class II Formin FH13 Modulates Pollen Tube Growth. Front. Plant Sci. 12, 232. doi:10.3389/fpls.2021.599961. Marković, V., Kulich, I., and Žárský, V. (2021). Functional Specialization within the EXO70 Gene Family in Arabidopsis. Int. J. Mol. Sci. 22, 7595. doi:10.3390/ijms22147595. Müller, K., Dobrev, P. I., Pěnčík, A., Hošek, P., Vondráková, Z., Filepová, R., et al. (2021). DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 187, 103–115. doi:10.1093/plphys/kiab242. Náprstková, A., Malínská, K., Záveská Drábková, L., Billey, E., Náprstková, D., Sýkorová, E., et al. (2021). Characterization of alba family expression and localization in arabidopsis thaliana generative organs. Int. J. Mol. Sci. 22, 1–23. doi:10.3390/ijms22041652. Rubil, N., Kalachova, T., Hauser, T. P., and Burketová, L. (2021). Specialist aphids feeding causes local activation of salicylic and jasmonic acid signaling in Arabidopsis veins. Mol. Plant-Microbe Interact. doi:10.1094/mpmi-08-21-0203-sc. Saccomanno, A., Potocký, M., Pejchar, P., Hála, M., Shikata, H., Schwechheimer, C., et al. (2020). Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. Front. Plant Sci. 11, 609600. doi:10.3389/fpls.2020.609600. Scholz, P., Pejchar, P., Fernkorn, M., Škrabálková, E., Pleskot, R., Blersch, K., et al. (2021). DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytol. doi:10.1111/nph.17930. Starodubtseva, A., Kalachova, T., Iakovenko, O., Stoudková, V., Zhabinskii, V., Khripach, V., et al. (2021). Bodipy conjugate of epibrassinolide as a novel biologically active probe for in vivo imaging. Int. J. Mol. Sci. 22. doi:10.3390/ijms22073599. Synek, L., Pleskot, R., Sekereš, J., Serrano, N., Vukašinović, N., Ortmannová, J., et al. (2021). Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc. Natl. Acad. Sci. U. S. A. 118. doi:10.1073/pnas.2105287118. Wiese, A. J., Steinbachová, L., Timofejeva, L., Čermák, V., Klodová, B., Ganji, R. S., et al. (2021). Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int. J. Mol. Sci. 22, 530. doi:10.3390/ijms22020530. 2020 Montesinos, J.C.; Abuzeineh, A.; Kopf, A.; Juanes‐Garcia, A.; Ötvös, K.; Petrášek, J.; Sixt, M.; Benková, E. (2020). Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. EMBO J. 39, 1–22. doi:10.15252/embj.2019104238. IF=9.96 Cifrová, P., Oulehlová, D., Kollárová, E., Martinek, J., Rosero, A., Žárský, V., et al. (2020). Division of Labor Between Two Actin Nucleators—the Formin FH1 and the ARP2/3 Complex—in Arabidopsis Epidermal Cell Morphogenesis. Front. Plant Sci. 11. doi:10.3389/fpls.2020.00148. IF=3.6 Daněk, M., Angelini, J., Malínská, K., Andrejch, J., Amlerová, Z., Kocourková, D., et al. (2020). Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant J. 101, 619-636.doi:10.1111/tpj.14566. IF=6.14 Fíla, J., Klodová, B., Potěšil, D., Juříček, M., Šesták, P., Zdráhal, Z., et al. (2020). The beta subunit of nascent polypeptide associated complex plays a role in flowers and siliques development of arabidopsis thaliana. Int. J. Mol. Sci. 21. doi:10.3390/ijms21062065. IF=4.56 Kashkan, I., Timofeyenko, K., Kollárová, E., and Růžička, K. (2020). In vivo reporters for visualizing alternative splicing of hormonal genes. Plants 9, 1–10. doi:10.3390/plants9070868. IF=2.87 Kulichová, K., Kumar, V., Steinbachová, L., Klodová, B., Timofejeva, L., Juříček, M., et al. (2020). PRP8A and PRP8B spliceosome subunits act coordinately to control pollen tube attraction in Arabidopsis thaliana. Development 147. doi:10.1242/dev.186742. IF=5.611 Larson, E. R., Ortmannová, J., Donald, N. A., Alvim, J., Blatt, M. R., and Žárský, V. (2020). Synergy among exocyst and SNARE interactions identifies a functional hierarchy in secretion during vegetative growth. Plant Cell 32, 2951–2963. doi:10.1105/TPC.20.00280. IF=9.61 Marhava, P., Aliaga Fandino, A. C., Koh, S. W. H., Jelínková, A., Kolb, M., Janacek, D. P., et al. (2020). Plasma Membrane Domain Patterning and Self-Reinforcing Polarity in Arabidopsis. Dev. Cell 52, 223-235.e5. doi:10.1016/j.devcel.2019.11.015. IF=10.092 Marković, V., Cvrčková, F., Potocký, M., Kulich, I., Pejchar, P., Kollárová, E., et al. (2020). EXO70A2 is critical for exocyst complex function in pollen development. Plant Physiol., pp.01340.2019. doi:10.1104/pp.19.01340. IF=6.9 Pejchar, P., Sekereš, J., Novotný, O., Žárský, V., and Potocký, M. (2020). Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Plant J. 103, 212–226. doi:10.1111/tpj.14720. IF=6.14 Tan, S., Zhang, X., Kong, W., Yang, X. L., Molnár, G., Vondráková, Z., et al. (2020). The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nat. Plants. doi:10.1038/s41477-020-0648-9. IF=13.25 Tan, S., Abas, M., Verstraeten, I., Glanc, M., Molnár, G., Hajný, J., et al. (2020). Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants. Curr. Biol. 30, 381-395.e8. doi:10.1016/j.cub.2019.11.058. IF=9.60 2019 Janková Drdová, E., Klejchová, M., Janko, K., Hála, M., Soukupová, H., Cvrčková, F., et al. (2019). Developmental plasticity of Arabidopsis hypocotyl is dependent on exocyst complex function. J. Exp. Bot. 70, 1255–1265. doi:10.1093/jxb/erz005. Jelínková, A., Malínská, K., and Petrášek, J. (2019). “Using FM Dyes to Study Endomembranes and Their Dynamics in Plants and Cell Suspensions,” in, 173–187. doi:10.1007/978-1-4939-9469-4_11. Kalachova, T., Janda, M., Šašek, V., Ortmannová, J., Nováková, P., Dobrev, I. P., et al. (2019). Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Ann. Bot. doi:10.1093/aob/mcz112. Leontovyčová, H., Kalachova, T., Trdá, L., Pospíchalová, R., Lamparová, L., Dobrev, P. I., et al. (2019). Actin depolymerization is able to increase plant resistance against pathogens via activation of salicylic acid signalling pathway. Sci. Rep. 9, 10397. doi:10.1038/s41598-019-46465-5. Müller, K., Hošek, P., Laňková, M., Vosolsobě, S., Malínská, K., Čarná, M., et al. (2019). Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells. Plant J. 100, 627–640. doi:10.1111/tpj.14474. Retzer, K., Akhmanova, M., Konstantinova, N., Malínská, K., Leitner, J., Petrášek, J., et al. (2019). Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nat. Commun. 10, 5516. doi:10.1038/s41467-019-13543-1. Rosero, A., Oulehlová, D., Žárský, V., and Cvrčková, F. (2019). Visualizing and Quantifying In Vivo Cortical Cytoskeleton Structure and Dynamics. Methods Mol. Biol. 1992, 135–149. doi:10.1007/978-1-4939-9469-4_9. Skokan, R., Medvecká, E., Viaene, T., Vosolsobě, S., Zwiewka, M., Müller, K., et al. (2019). PIN-driven auxin transport emerged early in streptophyte evolution. Nat. plants 5, 1114–1119. doi:10.1038/s41477-019-0542-5. Schwarzerová, K., Bellinvia, E., Martinek, J., Sikorová, L., Dostál, V., Libusová, L., et al. (2019). Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway. Sci. Rep. 9, 5725. doi:10.1038/s41598-019-42056-6. 2018 Angelini J, Vosolsobě S, Skůpa P, Ho AYY, Bellinvia E, Valentová O, Marc J. Phospholipase Dδ assists to cortical microtubule recovery after salt stress. Protoplasma. 2018 Jul;255(4):1195-1204. doi: 10.1007/s00709-018-1204-6. Epub 2018, Jan 24. PubMed PMID: 29455366. IF 2.457 Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. Front Plant Sci. 2018 Jul 12; 9:991. doi: 10.3389/fpls.2018.00991. eCollection 2018. PubMed PMID: 30050548; PubMed Central PMCID: PMC6052134, IF 3.68 Kulich I, Vojtíková Z, Sabol P, et al. Exocyst Subunit EXO70H4 Has a Specific Role in Callose Synthase Secretion and Silica Accumulation. Plant Physiology. 2018;176(3):2040-2051. doi:10.1104/pp.17.01693. IF 5.949 Krcková Z, Kocourková D, Danek M, Brouzdová J, Pejchar P, Janda M, Pokotylo I, Ott PG, Valentová O, Martinec J. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann Bot. 2018 Feb 12; 121(2):297-310. doi: 10.1093/aob/mcx160. PubMed PMID: 29300825; PubMed Central PMCID: PMC5808806, IF 3.65 Klíma P, Laňková M, Vandenbussche F, Van Der Straeten D, Petrášek J. Silver ions increase plasma membrane permeability through modulation of intracellular calcium levels in tobacco BY-2 cells. Plant Cell Rep. 2018 May;37(5):809-818. doi: 10.1007/s00299-018-2269-6. IF=2.989 Kroumanová, K., Kocourková, D., Daněk, M., Lamparová, L., Pospíchalová, R., Malínská, K., Krčková, Z. Burketová, L., Valentová, O., Martinec, J., Janda. M.:Characterisation of Arabidopsis flotillins in response to stresses. Biologia Plantarum. 2018 doi: 10.32615/bp.2019.017 IF=1.424 Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P, et al. 2018. A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Developmental Cell 45: 465–480.e11. IF 9.62 |
2017 Cvrčková, F., & Oulehlová, D. (2017). A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods, 13(1), 19. https://doi.org/10.1186/s13007-017-0171-9, IF 4.27 Gibalová, A., Steinbachová, L., Hafidh, S. et al. Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte. Plant Reprod (2017) 30: https://doi.org/10.1007/s00497-016-0295-5, IF 2.71 Hu Y., Depaepe T., Smet D., Hoyerova K., Klíma P., Cuypers A., Cutler S., Buyst D., Morreel K., Boerjan W., Martins J., Petrášek J., Vandenbussche F., Van Der Straeten D.: ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. Journal of Experimental Botany 68:4185-4203, 2017, IF 5.35 Pečenková, T., Janda, M., Ortmannová, J., Hajná, V., Stehlíková, Z., & Žárský, V. (2017). Early arabidopsis root hair growth stimulation by pathogenic strains of pseudomonas syringae. Annals of Botany, 120(3), 437-446. https://doi.org/10.1093/aob/mcx073, IF 3.65 Pečenková, T., Marković, V., Sabol, P., Kulich, I., & Zárský, V. (2017). Exocyst and autophagy-related membrane trafficking in plants. Journal of Experimental Botany, 69(1), 47-57. IF 5.35 Pečenková, T., Pleskot, R., & Žárský, V. (2017). Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein. International Journal of Molecular Sciences, 18(4), IF 3.68 Rawat, A., Brejšková, L., Hála, M., Cvrčková, F., & Žárský, V. (2017). The physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytologist, 216(2), 438-454, IF 7.43 Retzer K, Lacek J, Skokan R, Del Genio, C.I., Vosolsobě, S., Laňková M, Malínská K, Konstantinova N, Zažímalová E, Napier RM, Petrášek J and Luschnig C.: Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution. International Journal of Molecular Sciences 18, 2274; doi:10.3390/ijms18112274, 2017, IF 3.68. Sabol, P., Kulich, I., & Žárský, V. (2017). RIN4 recruits the exocyst subunit EXO70B1 to the plasma membrane. Journal of Experimental Botany, 68(12), 3253–3265, https://doi.org/10.1093/jxb/erx007, IF 5.35 Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Plant Physiology. 2017;173(3):1659-1675. doi:10.1104/pp.16.01709, IF 6.46. Schnablová, R., Herben, T., & Klimešová, J. (2017). Shoot apical meristem and plant body organization: a cross-species comparative study. Annals of Botany, 120(5), 833–843. https://doi.org/10.1093/aob/mcx116, IF 3.65 Synek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M., & Žárský, V. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology, 174(1), 223-240. IF 6.46. Vukašinović, N., Oda, Y., Pejchar, P., Synek, L., Pečenková, T., Rawat, A., Sekereš, J., Potocký, M. and Žárský, V. (2017), Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol, 213: 1052–1067. doi:10.1111/nph.14267, IF 7.43 |
2016 Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics. Plant Cell Physiol. 2016 Mar;57(3):488-504.doi: 10.1093/pcp/pcv209. Epub 2016 Jan 6. PubMed PMID:26738547, IF 4.76 Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P, Cwiklik L, Vukašinović N, Sternberg H, Yalovsky S, Žárský V. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. Plant Physiol. 2016 Oct; 172(2):980-1002. Epub 2016 Aug 11. PubMed PMID: 27516531; PubMed Central PMCID: PMC5047084, IF 6.46 Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biology. 2016; 17:81. doi:10.1186/s13059-016-0928-x. IF 11.91 Laňková M, Humpolíčková J, Vosolsobě S, Cit Z, Lacek J, Čovan M, Čovanová M, Hof M, Petrášek J. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy. Microsc Microanal. 2016 Apr;22(2):290-9. doi: 10.1017/S1431927616000568. Epub 2016 Apr 4. PubMed PMID: 27041337. IF 2.124 Simon S, Skůpa P, Viaene T, Zwievka M, Tejos R, Klíma P, Čarná M, Rolčík J, De Rycke R, Moreno I, Dobrev PI, Orellana A, Zažímalová E, Friml J: PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist 211: 65-74, 2016. IF 7.33 Steenackers W, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novak O, Zažímalová E, Napier R, Boerjan W, Vanholme B: The allelochemical 3,4-(methylenedioxy)cinnamic acid (MDCA) inhibits lignification and affects auxin homeostasis in Arabidopsis. Plant Physiology 172: 874-888, 2016. IF 6.46 |